Abstract

Increased production and reduced clearance of amyloid beta (Abeta) plays a central role in the pathogenesis of Alzheimer's disease (AD). We have recently shown that the neurotrophic peptide mixture Cerebrolysin (Cbl) has the ability of improving synaptic functioning and reducing amyloid deposition in a transgenic (tg) animal model of Alzheimer's disease (AD). Since in AD, potentially toxic Abeta aggregates accumulate not only around neurons but also in the blood vessels, then it is important to investigate whether bioactive compounds such as Cbl might have the capacity to ameliorate the age-related cerebral amyloid angiopathy (CAA) in tg models. To this end, tg mice expressing mutant human amyloid precursor protein (APP) under the Thy1 promoter were treated with Cbl or saline alone starting at 7 or 12 months of age for a total of three months. Neuropathological analysis with an antibody against Abeta showed that Cbl decreased amyloid deposition around the blood vessels in a time dependent manner. These effects were accompanied by a reduction in perivascular microgliosis and astrogliosis and increased expression of markers of vascular fitness such as CD31 and ZO-1. No lymphocytic infiltration was observed associated with Abeta in the vessels. Consistent with these findings, ultrastructural analysis showed that while in tg mice treated with saline alone there was an abundant accumulation of amyloid fibers in the vascular wall accompanied by thickening of the basal membrane and endothelial cell damage, in Cbl-treated mice there was considerable reduction in the subcellular alterations of endothelial and smooth muscle cells with preservation of basal membranes and intercellular junctions. Taken together, these results suggest that Cbl treatment might have beneficial effects in patients with cognitive impairment due to cerebrovascular amyloidosis by reducing Abeta accumulation and promoting the preservation of the cerebrovasculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.