Abstract

BackgroundExposure to fine particulate matter (PM2.5) has been associated with respiratory morbidity and mortality. Identification of interventional measures that are efficacious against PM2.5-induced toxicity may provide public health benefits. This study examined the inhibitory effects of nutritional supplementation with fish oil as a source of omega-3 fatty acids and vitamin E (Vit E) on PM2.5-induced lung toxicity in rats.MethodSixty four male Sprague Dawley rats were gavaged with phosphate buffered saline (PBS), corn oil (5 ml/kg), fish oil (150 mg/kg), or Vit E (75 mg/kg), respectively, once a day for 21 consecutive days prior to intratracheal instillation of PM2.5 (10 mg/kg) every other day for a total of 3 times. Serum and bronchoalveolar lavage fluids (BALFs) were collected 24 h after the last instillation of PM2.5. Levels of total proteins (TP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), 8-epi-prostaglandin F2α (8-epi-PGF2α), interleukin-1β (IL-1β), C-reactive protein (CRP), IL-6, and tumor necrosis factor-ɑ (TNF-ɑ) were analyzed for markers of cell injury and inflammation. Additionally, histological alterations of lung tissues were examined by hematoxylin-eosin staining.ResultExposure to PM2.5 resulted in lung toxicity, represented as increased levels of total proteins, LDH, 8-epi-PGF2α, IL-1β and TNF-α, and increased infiltration of inflammatory cells, and decreased SOD in the BALFs, and systemic inflammation, as evinced by increased levels of CRP and IL-6 in serum. Strikingly, supplementation with fish oil but not Vit E significantly ameliorated PM2.5-induced lung toxicity and systemic inflammation.ConclusionPM2.5 exposure induces oxidative stress, lung injury and inflammation, which is ameliorated significantly by fish oil and partially by Vit E.

Highlights

  • Exposure to fine particulate matter (PM2.5) has been associated with respiratory morbidity and mortality

  • Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are able to induce the generation of anti-inflammatory lipids, inhibit the activation of pro-inflammatory signaling through nuclear factor κB (NFκB) [16]

  • IL-1β, IL-6, C-reactive protein (CRP), and TNF-α ELISA kits were purchased from Boster Biological Technology Co., Ltd. (Wuhan, China). 8-epi-prostaglandin F2α (8-epi-PGF2α) ELISA kit was purchased from Elabscience Biotechnology Co., Ltd. (Wuhan, China)

Read more

Summary

Introduction

Exposure to fine particulate matter (PM2.5) has been associated with respiratory morbidity and mortality. This study examined the inhibitory effects of nutritional supplementation with fish oil as a source of omega-3 fatty acids and vitamin E (Vit E) on PM2.5-induced lung toxicity in rats. Vitamin E (Vit E) is regarded as an anti-oxidant substance that can block the development of some degenerative diseases by scavenging reactive oxygen species (ROS) [17, 18]. It refers to a group of eight fat soluble compounds that include four tocopherols and four tocotrienols, of which α-tocopherol (used in this study) has the highest biological activity in the eight isoforms of Vit E and terminates free radicals reactions [19, 20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call