Abstract
We have shown that reduced expression of receptor-interacting protein 140 (RIP140) alters the regulation of fatty-acid (FA) oxidation in muscle. To determine whether a high level of FA availability alters the effects of RIP140 on metabolic regulation, L6 myotubes were transfected with or without RNA interference oligonucleotide sequences to reduce RIP140 expression, and then incubated with high levels of palmitic acid, with or without insulin. High levels of palmitate reduced basal (53%-58%) and insulin-treated (24%-44%) FA uptake and oxidation, and increased basal glucose uptake (88%). In cells incubated with high levels of palmitate, low RIP140 increased basal FA uptake and insulin-treated FA oxidation and glucose uptake, and decreased basal glucose uptake and insulin-treated FA uptake. Under basal conditions, low RIP140 increased the mRNA content of FAT/CD36 (159%) and COX4 (61%), as well as the protein content of Nur77 (68%), whereas the mRNA expression of FGF21 (50%) was decreased, as was the protein content of CPT1b (35%) and FGF21 (44%). Under insulin-treated conditions, low RIP140 expression increased the mRNA content of MCAD (84%) and Nur77 (84%), as well as the protein content of Nur77 (23%). Thus, a low level of RIP140 restores the rates of FA uptake in the basal state, in part via a reduction in upstream insulin signaling. Our data also indicate that the protein expression of Nur77 may be modulated by RIP140 when muscle cells are metabolically challenged by high levels of palmitate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.