Abstract

This study aimed to investigate the effects of pomegranate (Punica granatum L.) seed hydro-ethanolic extract (PSE) on cholinergic dysfunction, neuroinflammation, and oxidative stress in the scopolamine-induced amnesic rats. The rats were given PSE (200, 400, and 800mg/kg, gavage) for 3weeks. In the third week, scopolamine was administered 30min before the Morris water maze (MWM) and passive avoidance (PA) tests. Oxidative stress indicators, acetylcholinesterase (AChE) activity, and mRNA expression of necrosis factor (TNF)-α, interleukin (IL)-1β, AChE, and M1 acetylcholine receptor (CHRM1) in the brain, were measured. PSE reduced the time (maximum 173%) and distance (maximum 332%) required to reach the platform during MWM learning (P < 0.001). In the prob test (P < 0.001), it increased the target area time (maximum 44%) and distance (maximum 30%). PSE also increased delay and light time (maximums of 86 and 48%, respectively) (P < 0.001), while decreasing the time in dark region of PA (maximums 727%) (P < 0.001). PSE also reduced malondialdehyde and AChE in the cortex (maximum 168 and 171%, respectively) and hippocampus (maximum 151 and 182%, respectively) (P < 0.001). In the PSE-treated groups, the levels of thiol and superoxide dismutase were increased in the cortex (maximum 54 and 65%, respectively) and hippocampus (maximum 90 and 51%, respectively) (P < 0.001). TNF-α, IL-1β, and AChE expressions in the hippocampus were reduced by PSE (maximum 114, 137, and 106%, respectively, P < 0.01). Meanwhile, CHMR expression was increased (66%). PSE successfully alleviated scopolamine-induced memory and learning deficits in rats which is probably via modulating cholinergic system function, oxidative stress, and inflammatory cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call