Abstract

The mechanism of epigallocatechin gallate (EGCG)-modified ovalbumin gel (EMOG) was investigated. Results indicated that, with the increase of EGCG concentration from 0% to 0.05%, the opacity, hardness, and cohesiveness of EMOG increased significantly from 0.058 to 0.133, 321.0g to 377.6g, and 0.879 to 0.951, respectively, while the soluble protein, surface hydrophobicity, and free sulfhydryl decreased significantly by 41.74%, 28.26%, and 39.36%, respectively. Moreover, EGCG promoted the formation of dense and stable microstructures of EMOG, changed the expansion rate, and improved the stability of EMOG. Moreover, the results of silico simulation showed that EGCG would insert into ovalbumin and interact with the amino acids through van der Waals force and hydrogen bonds, leading to a compact and stable protein structure. In this paper, the mechanism of modification of ovalbumin by EGCG was elucidated at the macro and micro levels, providing insights into the action of polyphenols and proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.