Abstract
Congenital muscular dystrophy (CMD) is characterized by severe muscle wasting, premature death in early childhood, and lack of effective treatment. Most of the CMD cases are caused by genetic mutations of laminin-alpha2, which is essential for the structural integrity of muscle extracellular matrix. Here, we report that somatic gene delivery of a structurally unrelated protein, a miniature version of agrin, functionally compensates for laminin-alpha2 deficiency in the murine models of CMD. Adeno-associated virus-mediated overexpression of miniagrin restored the structural integrity of myofiber basal lamina, inhibited interstitial fibrosis, and ameliorated dystrophic pathology. Furthermore, systemic gene delivery of miniagrin into multiple vital muscles significantly improved whole body growth and motility and quadrupled the lifespan (50% survival) of the dystrophic mice. Thus, our study demonstrated the efficacy of somatic gene therapy in a mouse model of CMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.