Abstract

BackgroundGalectin-9 is a β-galactoside-binding protein with two carbohydrate recognition domains. Recent studies have revealed that galectin-9 regulates cellular biological reactions and plays a pivotal role in fibrosis. The aim of this study was to determine the role of galectin-9 in the pathogenesis of bleomycin-induced systemic sclerosis (SSc).MethodsHuman galectin-9 levels in the serum of patients with SSc and mouse sera galectin-9 levels were measured by a Bio-Plex immunoassay and enzyme-linked immunosorbent assay. Lung fibrosis was induced using bleomycin in galectin-9 wild-type and knockout mice. The effects of galectin-9 on the fibrosis markers and signaling molecules in the mouse lung tissues and primary lung fibroblast cells were assessed with western blotting and quantitative polymerase chain reaction.ResultsGalectin-9 levels in the serum were significantly higher (9-fold) in patients compared to those of healthy individuals. Galectin-9 deficiency in mice prominently ameliorated epithelial proliferation, collagen I accumulation, and α-smooth muscle actin expression. In addition, the galectin-9 knockout mice showed reduced protein expression levels of fibrosis markers such as Smad2/3, connective tissue growth factor, and endothelin-1. Differences between the wild-type and knockout groups were also observed in the AKT, mitogen-activated protein kinase, and c-Jun N-terminal kinase signaling pathways. Galectin-9 deficiency decreased the signal activation induced by transforming growth factor-beta in mouse primary fibroblasts, which plays a critical role in fibroblast activation and aberrant catabolism of the extracellular matrix.ConclusionsOur findings suggest that lack of galectin-9 protects against bleomycin-induced SSc. Moreover, galectin-9 might be involved in regulating the progression of fibrosis in multiple pathways.

Highlights

  • Galectin-9 is a β-galactoside-binding protein with two carbohydrate recognition domains

  • Galectin-9 levels are increased in the serum of systemic sclerosis (SSc) patients To investigate the contribution of galectin-9 to SSc, the concentration of galectin-9 in the serum was determined by bio-plex immunoassay

  • We examined the association of serum galectin-9 levels with clinical pulmonary function tests, including forced vital capacity (FVC) and DLCO

Read more

Summary

Introduction

Galectin-9 is a β-galactoside-binding protein with two carbohydrate recognition domains. Recent studies have revealed that galectin-9 regulates cellular biological reactions and plays a pivotal role in fibrosis. Systemic sclerosis (SSc) is a chronic systemic connective tissue disease that exhibits characteristics such as essential vasculopathy; fibrosis in the skin, subcutaneous tissue, muscles, and internal organs (e.g., alimentary tract, lungs, heart, kidney, central nervous system); and immunologic activation [1, 2]. Endothelin-1 (ET-1) and CTGF are produced by endothelial cells and fibroblasts in the early and late phases of SSc. ET-1 is a vasoconstrictor that can stimulate collagen synthesis and inhibit MMP expression, leading to vasculopathy in SSc. CTGF was observed to be overexpressed in SSc by TGF-β-activated fibroblasts to stimulate collagen production [7, 8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call