Abstract

Alzheimer's disease (AD) is the most prevalent dementia, affecting a large number of populations. Despite being under scrutiny for decades, an effective therapeutic option is still not available. This study explores the therapeutic role of a nootropic herb Bacopa monnieri (BM) in AD-like pathological conditions produced by injecting preformed amyloid-β42 (Aβ42 ) fibril bilaterally into hippocampus of Wistar rats, and ethanolic extract of BM is orally administered for 4 weeks. Assessment of behavioral changes reveals that BM treatment ameliorates Aβ42 -induced cognitive impairment and compromised explorative behavior. Supplementation of BM also reduces oxidative stress biomarkers, proinflammatory cytokines, and cholinesterase activity in the AD rats. Additionally, BM treatment restores Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) imbalance, increases neurotrophic factors expression, and prevents neurodegeneration validated by quantifying Nissl-positive hippocampal neurons. Interestingly, BM administration eliminates amyloid plaques in the hippocampal region and normalizes the Aβ42 -induced increase in phospho-tau and total tau expression. Mechanistic investigations reveal that BM interacts with glycogen synthase kinase (GSK-3β) and restores Wnt/β-catenin signaling. BM has been used in diet as a nootropic herb for several centuries. This study highlights the anti-Alzheimer activity of BM from the behavioral to the molecular level by modulating mitochondrial dysfunction, and GSK-3β mediates the Wnt/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call