Abstract

Background: Colon cancer is one of the most common malignancies in many regions of the world and is thought to arise from the accumulation of mutations in a single epithelial cell of the colon and rectum. The benzimidazole comprises a important pharmacophore and privileged structure in modern drug discovery. Various substituted benzimidazole derivatives have been found to possess potential anticancer properties. Objective: The study aimed to prove the anti-colon cancer activity of novel benzimidazole derivative 4-(1H-benzo[d]imidazol-2-yl)-6-phenylpyrimidin-2-amine loaded chitosan nanoparticle (BZI 3 nano) by an 1, 2 Dimethylhydrazine (DMH) Induced rat model in-vivo study and identify the targeting efficiency of BZI 3 nano to treat colorectal cancer. Method: The effect of novel benzimidazole derivative 4-(1H-benzo[d]imidazol-2-yl)-6-phenylpyrimidin-2-amine loaded chitosan nanoparticle (BZI 3 nano) on the formation of aberrant crypt foci (ACF), apoptosis, histopathology, body weight, organs weight and heamotological parameters were studied in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. Results: BZI 3 nano (5 mg/kg, p.o) administration significantly reduced ACF number and increased the weight gain and apoptotic index compared to DMH treated group. The histological alterations induced by DMH were also significantly improved. Conclusion: In-vivo anticancer activities results revealed that the presence substituted benzimidazole derivative nanoparticle (BZI 3 nano) could have the anticancer potential of the scaffold and selective, good target for drug discovery, which can be regarded as promising anticancer potential. Key words: Benzimidazole derivative, Nanoparticles, DMH, ACF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.