Abstract
Background and aimsAlkaline dispersive subsoils are characterised by multiple physicochemical constraints that limit plant water and nutrient acquisition. Subsoil amelioration through organic amendments (OAs) requires significant financial investment. Whereas large yield responses can result following amelioration, sometimes small or even negative yield responses can occur, resulting in a significant net financial loss for the farmer. For farmers to feel confident in investing in subsoil amelioration better prediction of the likely yield improvement is required and to achieve this an understanding of the underlying mechanisms such as nutritional and non-nutritional drivers, and the longevity of benefits are required. Our study aimed to ascertain the drivers of yield improvements from subsoil amelioration with OAs.MethodsIn a controlled environment, wheat (Triticum aestivum L. cv. Scepter) plants were grown until maturity in a Solonetz amended with (i) poultry litter (PL; 20 t ha−1), and (ii) NPKS nutrients and (iii) model organic carbon (MOC) with equivalent amounts of nutrients and total carbon contained in the PL, and (iv) NPKS + MOC. Control (no amendments) and gypsum (5 t ha−1) were included as district practices. Before planting, amendments were applied as a vertical band at 20 – 40 cm depth and pre-incubated. Plant biomass, grain yield, root biomass, and physicochemical properties of the soil associated with the amendment band were quantified at harvest.ResultsCompared to the control, wheat grain yield was increased by 30% for PL, 43% for NPKS + MOC, and 61% for NPKS, but no differences in yield were detected for MOC or gypsum. The lower yield increase by PL than NPKS with or without MOC was likely due to the readily available form of plant nutrients in the inorganic fertilisers vs slower mineralisation of nutrients from the OAs. Improvement in soil physicochemical properties following amelioration of alkaline dispersive subsoil resulted in better root proliferation and subsoil water use. Grain yield showed a positive correlation with root biomass in the subsoil layers.ConclusionsIn the short-term (one crop cycle), organic amendments improved soil’s non-nutritional physical and chemical properties but had no additional nutritional effect on wheat grain yield compared to inorganic fertiliser application. Longer-term studies are needed to determine the legacy effect of the nutritional contribution in conjunction with the improvement of soil structure from the OAs in alkaline dispersive subsoils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.