Abstract

Psoriasis, a prevalent chronic inflammatory skin ailment affecting approximately 2-3% of the global population, is characterized by persistent symptoms. Dexamethasone, a primary corticosteroid for treating psoriasis, demonstrates notable efficacy; however, its limited skin permeation results in documented adverse effects. To address this, the presented study employed a novel strategy to conjugate gold nanorod and dexamethasone and evaluate their potential for mitigating psoriatic inflammation using an imiquimod-induced mouse model and human skin cells. Our findings revealed enhanced cutaneous penetration of gold nanorod and dexamethasone conjugates compared with that of dexamethasone, owing to superior skin penetration. Gold nanorod and dexamethasone conjugates demonstrated an optimal pharmacological impact at minimal dosages without toxicity during extended use. To further enhance the effectiveness of gold nanorod and dexamethasone conjugates, 808 nm near-infrared laser irradiation, which reacts to gold, was additionally applied to achieve thermal elevation to expedite drug skin penetration. Supplementary laser irradiation at 808 nm significantly ameliorated psoriatic symptoms following deep gold nanorod and dexamethasone conjugates penetration. This corresponded with restored peroxisome proliferator-activated receptor-γ levels and accelerated dexamethasone release from the gold nanorod and dexamethasone conjugates complex. These findings highlight the potential of gold nanorod and dexamethasone conjugates to enhance drug penetration through dermal layers, thereby aiding psoriasis treatment. Moreover, its compatibility with photothermal therapy offers prospects for novel therapeutic interventions across various inflammatory skin disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.