Abstract

In photon-initiated crosslinking reactions of polyethylene molecules, the auxiliary crosslinkers in form of either monomer or homopolymer will cause bridging connections between polymeric molecules by transforming the irradiated photon energy to chemical energy under the assistance of photon-initiators, which can improve photon-initiation quantum efficiency and crosslinking uniformity. In the present study, the auxiliary crosslinkers of TAIC, TAC and TMPTA combining the macromolecular photon-initiator of BPL are employed into the ultraviolet (UV)-initiation technology to develop high-level crosslinked polyethylene (XLPE) insulation materials, whilst elucidating the structural and electrical mechanisms of the dielectric amelioration deriving from auxiliary crosslinking schemes. The specified photosensitive auxiliary crosslinkers can chemically bridge polyethylene molecules in the UV-initiated polyethylene crosslinking process, which can effectively promote polyethylene crosslinking degree but will slightly abate polyethylene crystallinity. Whereas, the orientation polarization and relaxation of molecular electric-dipoles on auxiliary crosslinkers cause additional dielectric permittivity and loss respectively, which will probably reduce insulation performances of XLPE. By contrast to XLPE benchmark, especially for grafting auxiliary crosslinker TAIC with the multiple-coupling carbonyl groups in a ring-conjugation, the preferable deep charge-traps can be introduced into polyethylene matrix to effectively improve electrical conductance and AC dielectric breakdown strength. This study provides experimental basis for developing the photon-initiated XLPE insulation materials with advanced dielectric performances required for manufacturing high-voltage grade cables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call