Abstract

The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11th intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages.

Highlights

  • The corn snake (Pantherophis guttatus) is a new model species appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades

  • Amelanistic corn snakes exhibit a normal pattern of orange dorsal saddles and lateral blotches, but the black borders around these marks are replaced with white skin (Fig. 1)

  • Investigation of the molecular genetic determinism of such colour variants in squamates is hindered by the lack of extensive genomic resources and has so-far mainly relied on sequencing candidate genes, an approach that has been successful in some cases (e.g.42) but ineffective in many others (e.g.43–45)

Read more

Summary

Introduction

The corn snake (Pantherophis guttatus) is a new model species appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. Amelanistic corn snakes exhibit a normal pattern of orange dorsal saddles and lateral blotches (made of uncharacterised pigments), but the black borders around these marks are replaced with white skin (Fig. 1). Investigation of the molecular genetic determinism of such colour variants in squamates is hindered by the lack of extensive genomic resources and has so-far mainly relied on sequencing candidate genes, an approach that has been successful in some cases (e.g.42) but ineffective in many others (e.g.43–45)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.