Abstract

Symbol-pair codes are proposed to guard against pair-errors in symbol-pair read channels. The minimum symbol-pair distance is of significance in determining the error-correcting capability of a symbol-pair code. One of the central themes in symbol-pair coding theory is the constructions of symbol-pair codes with the largest possible minimum symbol-pair distance. Maximum distance separable (MDS) and almost maximum distance separable (AMDS) symbol-pair codes are optimal and sub-optimal regarding the Singleton bound, respectively. In this paper, six new classes of AMDS symbol-pair codes are explicitly constructed through repeated-root cyclic codes. Remarkably, one class of such codes has unbounded lengths and the minimum symbol-pair distance of another class can reach 13.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.