Abstract

The rapid advancement, use of diverse architectural features and introduction of High Level Synthesis (HLS) tools in FPGA technology have enhanced the capacity of data-level parallelism on a chip. A generic FPGA based HLS multi-accelerator system requires a microprocessor (master core) that manages memory and schedules accelerators. In a real environment, such HLS multi-accelerator systems do not give a perfect performance due to memory bandwidth issues. Thus, a system demands a memory manager and a scheduler that improves performance by managing and scheduling the multi-accelerator’s memory access patterns efficiently. In this article, we propose the integration of an intelligent memory system and efficient scheduler in the HLS-based multi-accelerator environment called Advanced Multi-accelerator Controller (AMC). The AMC system is evaluated with memory intensive accelerators, High Performance Computing (HPC) applications and implemented and tested on a Xilinx Virtex-5 ML505 evaluation FPGA board. The performance of the system is compared against the microprocessor-based systems that have been integrated with the operating system. Results show that the AMC based HLS multi-accelerator system achieves 10.4x and 7x of speedup compared to the MicroBlaze and Intel Core based HLS multi-accelerator systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.