Abstract

The gas sensing characteristics of pure and 0.4–2.0at% Ni-loaded SnO2 nanoparticles have been measured in dry and humid atmospheres. Approximately the same response to 50ppm CO, response/recovery kinetics, and resistance in air regardless of wide range of humidity variation from dry to 80% r.h. have been accomplished by loading 1.0 and 2.0at% Ni to SnO2. The role of Ni related surface species in the decrease of humidity dependence of gas sensing characteristics has been elucidated by diffuse-reflectance Fourier transform IR spectroscopy. The work function values determined from the transient of sensor resistance and contact potential difference revealed that Ni loading to SnO2 determines the appearance of surface electron acceptors responsible for a significant upward energy bands bending even in N2 atmosphere (>0.5eV), and, ultimately, explains the significant increase of the sensors baseline resistance and the decrease of the sensor signals. In this way, the origins of the ambivalent effect of Ni loading are clarified and the way towards a rational optimization of the sensor performance opened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.