Abstract

In this work, we demonstrated that ${p}$ -type and ${n}$ -type conduction could be induced in unintentionally doped pristine monolayer (ML) WS2 by forming a hybrid WS2/InGaN quantum dots (QDs) heterostructure, in which the ML-WS2 is partially covered by few-layer graphene. Under illumination, the photo-generated holes or electrons in the QDs were injected vertically into the ML-WS2 and then transported laterally therein. The polarity of the WS2 channel can be controlled by the bias applied to the graphene electrode. This work provides a potential approach to develop ambipolar devices of ML transition metal dichalcogenides through photocarrier doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.