Abstract

Semiconductor nanowire field-effect transistors (FETs) are interesting for fundamental studies of charge transport as well as possible applications in electronics. Here, we report low-voltage, low-hysteresis and ambipolar PbSe nanowire FETs using electrolyte-gating with ionic liquids and ion gels. We obtain balanced hole and electron mobilities at gate voltages below 1 V. Due to the large effective capacitance of the ionic liquids and thus high charge carrier densities electrolyte-gated nanowire FETs are much less affected by external doping and traps than nanowire FETs with traditional dielectrics such as SiO2. The observed current-voltage characteristics and on/off ratios indicate almost completely transparent Schottky barriers and efficient ambipolar charge injection into a low band gap one-dimensional semiconductor. Finally, we explore the possibility of applying these ambipolar nanowire FETs in complementary inverters for printed electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.