Abstract

By placing a magnetic filter across a rectangular plasma source (closed at one end with a ceramic plate and an rf antenna, and terminated at the opposite end by a grounded grid), we experimentally investigate the effect of conducting and insulating source walls on the nature of the plasma diffusion phenomena. The use of a magnetic filter creates a unique plasma, characterized by a high upstream electron temperature (Teu∼5 eV) near the rf antenna and a low downstream electron temperature (Ted∼1 eV) near the grid, which more clearly demonstrates the role of the source wall materials. For conducting walls a net ion current to ground is measured on the grid, and the plasma potential is determined by a mean electron temperature within the source. For insulating walls the plasma potential is determined by the downstream electron temperature (i.e., Vp∼5.2Ted in argon), and the net current to the grid is exactly zero. Furthermore, by inserting a small additional upstream conductor (that can be made floating or grounded through an external circuit switch), we demonstrate that the plasma potential can be controlled and set to a low (Vp∼5.2Ted), or high (Vp∼5.2Teu) value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call