Abstract

The thermal dimerization of cycloheptatriene is predicted to occur by a concerted [6 + 4] cycloaddition via an ambimodal [6 + 4]/[4 + 6] transition state (TS) and a competing stepwise diradical (6 + 2) cycloaddition; both dimers subsequently undergo intramolecular [4 + 2] cycloadditions to afford thermally stable tetracyclic products. The ambimodal TS is the 10π-electron version of the prototype bispericyclic dimerization of cyclopentadiene discovered by Caramella et al. in 2002. Quantum mechanical studies using several common DFT functionals and post-HF methods, ωB97X-D, M06-2X, DLPNO-CCSD(T), NEVPT2, and PWPB95-D3(BJ), and quasiclassical molecular dynamics simulations provide details of bond timing and bifurcation pathways. By comparing the ambimodal [6 + 4]/[4 + 6] TS for cycloheptatriene dimerization with the ambimodal [4 + 2]/[2 + 4] TS of cyclopentadiene dimerization, we found that the high distortion energy in cycloheptatriene dimerization is the key to its relatively high energy barrier. The computational investigations were coupled with experimental studies of the cycloheptatriene dimerization, which resulted in the isolation of the two tetracyclic dimers. At lower temperature, the product from the predicted exo-[6 + 4]/[4 + 6] cycloaddition, followed by a subsequent intramolecular [4 + 2] cycloaddition, predominantly forms, while at higher temperature, the diradical (6 + 2) cycloadduct is the major product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.