Abstract

The frequency-dependent behaviour of the dielectric properties of biological tissues in the frequency range below 1 kHz has been under debate since the past century. Here, we reanalyse the raw data of the main resource of the dielectric properties of biological tissues in impedance representation. Employing a Kramers-Kronig validity test and parameter estimation techniques, we can describe the data by two physical parametric models that correspond to opposing biophysical interpretations: on the one hand the data can be explained only by intrinsic tissue properties, but on the other hand evidence for electrode-specific effects can be found for all tissues under investigation. The first interpretation would justify the continued use of a parametric model comprising four Cole-Cole dispersions, which describe the dielectric properties from extremely low to very high frequencies. As an alternative that is in accordance with the second interpretation, we suggest to omit the slowest of the four dispersions in the model and increase the static conductivity to account for a frequency-independent conductivity below 1 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.