Abstract

This article estimates and tests the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji based on stock market data. We introduce a novel methodology to estimate the conditional expectation, which characterizes the impact of a decision maker’s ambiguity attitude on asset prices. Our point estimates of the ambiguity parameter are between 25 and 60, whereas our risk aversion estimates are considerably lower. The substantial difference indicates that market participants are ambiguity averse. Furthermore, we evaluate if ambiguity aversion helps explaining the cross-section of expected returns. Compared with Epstein and Zin preferences, we find that incorporating ambiguity into the decision model improves the fit to the data while keeping relative risk aversion at more reasonable levels. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.