Abstract
The molecular dipole polarizability can be decomposed into components corresponding to the charge flow between atoms and changes in atomic dipole moments. Such decompositions are recognized to depend on how atoms are defined within a molecule, as, for example, by Hirshfeld, iterative Stockholder, or quantum topology partitioning of the electron density. For some of these, however, there are significant differences between the numerical results obtained by analytical response methods and finite field calculations. We show that this difference is due to analytical response methods accounting for (only) the change in electron density by a perturbation, while finite field methods may also include a component corresponding to a perturbation-dependent change in the definition of an atom within a molecule. For some atom-in-molecule definitions, such as the iterative Hirshfeld, iterative Stockholder, and quantum topology methods, the latter effect significantly increases the charge flow component. The decomposition of molecular polarizability into atomic charge flow and induced dipole components thus depends on whether the atom-in-molecule definition is taken to be perturbation-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.