Abstract

A very thin amorphous carbon film (10–30nm), has been bombarded with sputtered Cr nanoparticles, resulting in inelastic collision between the nanoparticles and the nuclei of the C-atoms causing atom displacement and re-arrangement into graphene layers. The process occurs at ambient temperature. Fabrication of graphitic microporous carbon terminated with few-to-multilayer graphene walls has been verified by Raman spectroscopy and scanning transmission electron microscopy. High resolution transmission electron micrographs reveal that the formation of graphene layers is highly sensitive to the sputtering parameters. With a gradual increase in the sputtering voltage/current density/time from 3.5kV/40mA–cm−2/1.0min to 5.0kV/70mA–cm−2/3.0min the graphitic domains are found to transform from semi-graphitized layers to well-defined, highly ordered, larger-area graphene walls within the microporous network. The mechanism of this graphitic microporous carbon formation is assumed to be due to two simultaneous processes: in one hand, the sputtering plasma, containing energetic ions and sub-atomic particles, act as dry-etchant to activate the a:C film to transform it into microporous carbon, whereas on the other hand, the charged metal nanoparticle/ion bombardment under sputtering resulted in the inelastic collision between the nanoparticles/ions and the nuclei of the C atoms followed by atom displacement (and displacement cascade) and re-arrangement into ordered structure to form graphitic domains within the microporous carbon network. H2 storage experiment of the samples depicts excellent hydrogen storage properties. This simple, cost-effective, complementary-metal-oxide-semiconductor-compatible, single-step process of metal-graphene hybrid nanomaterial formation may find interesting applications in the field of optoelectronics and biotechnology. Additionally, this method can be adopted easily for the incorporation of transition metals into graphene and similar graphitic carbon nanostructures and may enhance the hydrogen storage capacity for energy-related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call