Abstract
Extensive experimental investigations were conducted on the Golden Gate Bridge in San Francisco, California, to determine, using ambient vibration data, parameters of major interest in both wind and earthquake problems, such as effective damping, the three‐dimensional mode shapes, and the associated frequencies of the bridge vibration. The paper deals with the tests that involved the simultaneous measurement of vertical, lateral, and longitudinal vibration of the suspended structure; a subsequent paper addresses the measurement of the tower vibration. Measurements were made at selected points on different cross sections of the stiffening structure: 12 were on the main span and 6 on the side span. Good modal identification was achieved by special deployment and orientation of the motion‐sensing accelerometers and by summing and subtracting records to identify and enhance vertical, torsional, lateral, and longitudinal vibrational modes. In all, 91 modal frequencies and modal displacement shapes of the suspended span were recovered: 20 vertical, 18 torsional, 33 lateral, and 20 longitudinal, all in the frequency range 0.0–1.5 Hz. These numbers include symmetric and antisymmetric modes of vibration. Finally, comparison with previously computed two‐ and three‐dimensional mode shapes and frequencies shows good agreement with the experimental results, thus confirming both the accuracy of the experimental determination and the reliability of the methods of computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.