Abstract

In addition to serving as an f-element ligand and rare-earth method complexing agent, tributyl phosphate is a compound containing core functional groups that mimic those routinely found in degradation products from industrial processes. Because detection of trace quantities of tributyl phosphate can provide insight into the routes of contamination and degradation in the environment, there is a need to develop methods capable of detecting trace quantities of tributyl phosphate. Vapor detection at atmospheric pressure is one approach that is both sensitive and rapid. We present here the use of atmospheric flow tube mass spectrometry for the ambient vapor sampling of tributyl phosphate from headspace of ppb-level solutions in methanol. Gas phase clustering reactions were to enhance detection levels via the addition of small quantities of the dopants diethylamine, triethylamine, and pinacolyl methylphosphonate in the vapor stream. Detection of the tributyl phosphate vapor emanating from these solutions demonstrated a linear range for the protonated tributyl phosphate species of 1–1000 ppb from solution. The clusters of tributyl phosphate with diethylamine, triethylamine, and pinacolyl phosphonate each yielded linear ranges of 1–250 ppb for tributyl phosphate in solution. Despite smaller linear ranges, the addition of these dopant species added a layer of analytical selectivity and reduced variability in signals from quality control samples. These data were obtained using an atmospheric flow tube source coupled to a linear ion trap mass spectrometer, which demonstrates the applicability of trapping systems to the atmospheric flow tube ionization technique while monitoring positive ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call