Abstract

Phosphorene suffers from instability under ambient condition, despite its potential to bridge the gap between graphene and two-dimensional (2D) metal chalcogenides. We report effective exfoliation and stabilization of few layer phosphorene (FLP) in the presence of strongly interacting surfactants. Surfactants containing long hydrophobic chain and nonbulky charged headgroups (CTAB) effectively exfoliate and stabilize FLP in water, which is consistent with our density functional theory prediction. Nuclear magnetic resonance measurements are systematically employed to probe the interaction between surfactants and FLP. Retarded diffusion rate measured by 2D DOSY spectroscopy revealed the presence of noncovalently bonded CTAB over phosphorene. 2D NOESY spectroscopy further suggests the interdigitated arrangement of surfactants. Such a tight interaction impedes the ambient degradation rate of phosphorene by 70–80%. This work proposes a new insight into the control over ambient degradation of phosphorene without...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.