Abstract
In order to minimize electric grid power consumption, energy harvesting from ambient RF sources is considered as a promising technique for wireless charging of low-power devices. To illustrate the design considerations of RF-based ambient energy harvesting networks, this article first points out the primary challenges of implementing and operating such networks, including non-deterministic energy arrival patterns, energy harvesting mode selection, energy-aware cooperation among base stations (BSs), etc. A brief overview of the recent advancements and a summary of their shortcomings are then provided to highlight existing research gaps and possible future research directions. To this end, we investigate the feasibility of implementing RF-based ambient energy harvesting in ultra-dense small cell networks (SCNs) and examine the related trade-offs in terms of the energy efficiency and signal-to-interference-plus-noise ratio (SINR) outage probability of a typical user in the downlink. Numerical results demonstrate the significance of deploying a mixture of on-grid small base stations (SBSs)~(powered by electric grid) and off-grid SBSs~(powered by energy harvesting) and optimizing their corresponding proportions as a function of the intensity of active SBSs in the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.