Abstract

The gas phase hydrogen abstraction reaction kinetics of short chained oxygenated hydrocarbons of atmospheric relevance has been studied using density functional theory, basis set extrapolation procedures, Møller-Plesset second order perturbation theory and Coupled-Cluster Singles Doubles. The rate constants for the reaction of the OH radical with nine different oxygenated compounds: CH3OH, CH3CH2OH, H2CO, CH3CHO, CH3COCH3, CH3OCH3, HCOOH, CH3COOH, HCOOCH3 with a total of 18 individual hydrogen abstraction reactions have been computationally determined and compared to experimental data. The performance of DFT in predicting the imaginary vibrational frequency of the nuclear motion at the transition state has been evaluated to assess tunnelling effects using Wigner, Bell and Eckart tunnelling corrections. Several different hybrid methodologies utilizing DFT/MP2 structures, vibrational frequencies and explicitly correlated Coupled Cluster single point energy corrections have been investigated to identify an approach for obtaining reliable reaction kinetics. Our investigation shows that CCSD(T)-F12a/VTZ-F12//BH&HLYP/aug-cc-pVTZ using a Bell or Eckart tunnelling correction yields rate constants within a factor of ~3 of experimental data and branching ratios within experimental uncertainty for the test set of short chained oxygenated compounds of atmospheric relevance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.