Abstract

Objectives Evidence from murine research supports that fine particulate matter (PM2.5) may stimulate the hypothalamic-pituitary-adrenal axis, leading to elevated circulating glucocorticoid levels. Epidemiologic research examining parallel associations document similar associations. We examined these associations among a diverse sample of pregnant individuals exposed to lower levels of ambient PM2.5. Materials and Methods Participants included pregnant individuals enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pre-birth cohort. Daily residential PM2.5 exposure was estimated using a satellite-based spatial-temporal hybrid model. Maternal 3rd trimester salivary cortisol levels were used to calculate several features of the diurnal cortisol rhythm. We used multivariable linear regression to examine PM2.5 during the pre-conception period and during each trimester in relation to cortisol awakening rise (CAR), slope, and area under the curve relative to ground (AUCG). Results and Discussion The average PM2.5 exposure level across pregnancy was 8.13 µg/m3. PM2.5 in each exposure period was positively associated with AUCG, a measure of total cortisol output across the day. We also observed an inverse association between PM2.5 in the 3rd trimester and diurnal slope, indicating a steeper decline in cortisol throughout the day with increasing exposure. We did not detect strong associations between PM2.5 and slope for the other exposure periods or between PM2.5 and CAR for any exposure period. Conclusions In this sample, PM2.5 exposure across the preconception and pregnancy periods was associated with increased cortisol output, even at levels below the U.S. National Ambient Air Quality Annual Standard for PM2.5 of 12.0 µg/m3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call