Abstract

The relationship between the components of particulate matter with an aerodynamic diameter of 2.5 or less (PM2.5) and bone strength remains unclear. Based on a large-scale epidemiologic survey, we investigated the individual and combined associations of PM2.5 and its components with bone strength. A total of 65 906 individuals aged 30 to 79 years were derived from the China Multi-Ethnic Cohort Annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound. The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with QUI, respectively. Our analysis shows that per-SD increase (μg/m3) in 3-year average concentrations of PM2.5 (mean difference [MD] -7.38; 95% CI, -8.35 to -6.41), black carbon (-7.91; -8.90 to -6.92), ammonium (-8.35; -9.37 to -7.34), nitrate (-8.73; -9.80 to -7.66), organic matter (-4.70; -5.77 to -3.64), and soil particles (-5.12; -6.10 to -4.15) were negatively associated with QUI. In addition, these associations were more pronounced in men, and people older than 65 years with a history of smoking and chronic alcohol consumption. We found that long-term exposure to PM2.5 and its components may lead to reduced bone strength, suggesting that PM2.5 and its components may potentially increase the risk of osteoporosis and even fracture. Nitrate may be responsible for increasing its risk to a greater extent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call