Abstract

Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.