Abstract
Research interest in the Kinki region, southwestern Japan, has been aroused by the frequent occurrence of microearthquake activity that do not always coincide with documented active fault locations. Previous studies in the Kinki region focused mainly on deep, large-scale structures and could not efficiently resolve fine-scale (~ 10 km) shallow crustal structures. Hence, characterization of the upper crustal structure of this region at an improved spatial resolution is required. From the cross-correlation of the vertical components of the ambient seismic noise data recorded by a densely distributed seismic array, we estimated Rayleigh wave phase velocities using a frequency domain method. Then, we applied a direct surface wave tomographic method for the measured phase velocity dispersion data to obtain a 3D S-wave velocity model of the Kinki region. The estimated velocity model reveals a NE–SW trending low-velocity structure coinciding with the Niigata–Kobe Tectonic Zone (NKTZ) and the active Biwako-seigan Fault Zone (BSFZ). Also, we identified fine-scale low-velocity structures coinciding with known active faults on the eastern side of the NKTZ, as well as sets of low-velocity structures across the Tanba region. Furthermore, sedimentary basins manifest as low-velocity zones extending to depths ranging from ~ 1.5 to 2 km, correlating with those reported in previous studies. Our results therefore contribute towards fundamental understanding of earthquake faulting as well as tectonic boundary and will be useful for hazard assessment and disaster mitigation.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.