Abstract

A two-month-long glider deployment in the Gulf of St. Lawrence, Canada, measured the ambient sound level variability with depth and lateral position across a narrow channel that serves as an active commercial shipping corridor. The Honguedo Strait between the Gaspé Peninsula and Anticosti Island has a characteristic sound channel during the Summer and Fall due to temperature variation with depth. The experiment comprised continuous acoustic measurements in the band 1-1000 Hz and oceanographic (temperature and salinity) measurements from a profiling electric glider down to 210 m water depth. The mean observed ambient sound depth-profile was modeled by placing a uniform distribution of sources near the surface to represent a homogeneous wind-generated ocean wave field and computing the acoustic field using normal modes. The measurements and predictions match within the observed error bars and indicate a minimum in the sound channel at 70 m depth and a relative increase by ∼1 dB down to 180 m depth for frequencies >100 Hz. The impact of detector depth, the distance to a busy shipping corridor, wind noise, flow noise, and self-noise are discussed in the context of passive acoustic monitoring and marine mammal detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.