Abstract
Ambient ionisation mass spectrometry (AIMS) is a form of mass spectrometry whereby analyte ionisation occurs outside of a vacuum source under ambient conditions. This enables the direct analysis of samples in their native state, with little or no sample preparation and without chromatographic separation. The removal of these steps facilitates a much faster analytical process, enabling the direct analysis of samples within minutes if not seconds. Consequently, AIMS has gained rapid popularity across a diverse range of applications, in particular the analysis of drugs and toxins. Numerous fields rely upon mass spectrometry for the detection and identification of drugs, including clinical diagnostics, forensic chemistry, and food safety. However, all of these fields are hindered by the time-consuming and laboratory-confined nature of traditional techniques. As such, the potential for AIMS to resolve these challenges has resulted in a growing interest in ambient ionisation for drug and toxin analysis. Since the early 2000s, forensic science, diagnostic testing, anti-doping, pharmaceuticals, environmental analysis and food safety have all seen a marked increase in AIMS applications, foreshadowing a new future for drug testing. In this review, some of the most promising AIMS techniques for drug analysis will be discussed, alongside different applications of AIMS published over a 5-year period, to provide a summary of the recent research activity for ambient ionisation for drug and toxin analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.