Abstract

Elastomers with environmental adaption have attracted considerable attention for advanced applications in various areas. Here, we fabricate an ambient environment adaptive elastomer by assembling triblock copolymers polystyrene-b-poly(acrylic acid)-b-polystyrene (SAS) and polystyrene-b-poly(ethylene oxide)-b-polystyrene (SES). Owing to the microphase separation of triblock polymers and hydrogen-bonding complexation of their middle segments, the SAS/SES complex presents dichotomy of vitrified hard PS domains and soft PAA/PEO domains, which presents major relaxation transition in the temperature zone 10-30 °C and relative humidity (RH) 40-60%. The SAS/SES elastomer presents quick adaption to the ambient environment change with temperature and humidity coupling. Moreover, after a loading-unloading cycle training, the SAS/SES elastomer exhibits domain orientation, low energy dissipation, high recovery ratio, and distinct strain stiffening compared with the pristine complex. The SAS/SES elastomer has potential to be used as a sensing and adaption component for complicated intelligent systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call