Abstract

Urea synthesis under mild conditions starting from the electrocatalytic coupling of carbon dioxide (CO2) and nitrate represents a promising alternative experimentally to conquer the huge energy consumption in the industrial Haber-Bosch process. Herein, an electrocatalyst consisting of CuRu alloy nanoparticles on carbonized cellulose (CuRu-CBC) is designed and realizes the urea yield rate of 394.85 ± 16.19 μg h-1 mgcat-1 and an ultrahigh faradaic efficiency (FE) of 68.94 ± 3.05% at -0.55 V (vs. RHE) under ambient conditions. Further XAS analyses indicated that the favored internal electron transfer between Cu and Ru dual active sites significantly improved the C-N coupling activity. Various characterizations, including in situ ATR-SEIRAS and DEMS analysis highlighted the favorable generation of key intermediates *CO and *NH, making CuRu-CBC a promising catalyst for urea synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.