Abstract
Electrosynthesis of NH3 through the N2 reduction reaction (NRR) under ambient conditions is regarded as promising technology to replace the industrial energy- and capital-intensive Haber-Bosch process. Herein, a room-temperature spontaneous redox approach to fabricate a core-shell-structured Au@CeO2 composite, with Au nanoparticle sizes below about 10 nm and a loading amount of 3.6 wt %, is reported for the NRR. The results demonstrate that as-synthesized Au@CeO2 possesses a surface area of 40.7 m2 g-1 and a porous structure. As an electrocatalyst, it exhibits high NRR activity, with an NH3 yield rate of 28.2 μg h-1 cm-2 (10.6 μg h-1 mg-1 cat. , 293.8 μg h-1 mg-1 Au ) and a faradaic efficiency of 9.50 % at -0.4 V versus a reversible hydrogen electrode in 0.01 m H2 SO4 electrolyte. The characterization results reveal the presence of rich oxygen vacancies in the CeO2 nanoparticle shell of Au@CeO2 ; these are favorable for N2 adsorption and activation for the NRR. This has been further verified by theoretical calculations. The abundant oxygen vacancies in the CeO2 nanoparticle shell, combined with the Au nanoparticle core of Au@CeO2 , are electrocatalytically active sites for the NRR, and thus, synergistically enhance the conversion of N2 into NH3 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.