Abstract

The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray diffraction (XRD), respectively. The AEC is proportional to the specific conductivity (σ0) and the exponential of (1–ɛ) (ɛ is porosity) by a quasi-uniform formula based on the percolation theory. The σ0 can reflect the intrinsic conductivity of the carbon cathodes free of pores, and it depends on the mean crystallite size parallel to the layer (002). The exponent n is dependent on the materials nature of the cathode aggregates, while an averaged value, 4.65, can practically work well with 5 types of cathode materials. The calculation of σ0 can be extended to the graphitic cathodes containing different aggregates using the simple rule of mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.