Abstract
Short (<2.5 mm) cellulose fiber–silica composite aerogels were synthesized by dispersing cellulose fibers in polyethoxydisiloxane-based sol. After in situ gelation, silica phase was hydrophobized with hexamethyldisilazane, and the composites were dried either at ambient pressure or with supercritical (sc) CO2. Fiber concentration was varied from 0 to 25 wt% (corresponding to 0–2.1 vol%) of the final dried composite. Preformed cellulosic fiber network preserved the monolithic shape of the silica-based composites during ambient drying. At room conditions, thermal conductivities were 0.015 ± 0.001 W/(m K) for sc-dried aerogels and 0.017 ± 0.001 W/(m K) for their ambient-dried counterparts. Materials dried with either method exhibited large specific surface areas, from 570 to 730 m2/g, and SEM analysis did not show significant differences in the global structure of the silica network. Composite aerogels were hydrophobic with water contact angles around 138°. Based on this proof of concept, the same approach was used with a variety of natural and recycled cellulosic fibers also resulting in silica-based monoliths with low thermal conductivities in the 0.016–0.023 W/(m K) range, all produced via ambient drying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.