Abstract
Nowadays, the explosive growth of Internet-of-Things-related applications has required the design of low-cost and low-power wireless sensors. Although backscatter radio communication is a mature technology used in radio frequency (RF) identification applications, ambient backscattering is a novel approach taking advantage of ambient signals to simplify wireless system topologies to just a sensor node and a receiver (RX) circuit eliminating the need for a dedicated carrier source. This paper introduces a novel wireless tag and RX system that utilizes broadcast frequency modulated (FM) signals for backscatter communication. The proposed proof-of-concept tag comprises of an ultralow-power microcontroller (MCU) and a RF front-end for wireless communication. The MCU can accumulate data from multiple sensors through an analog-to-digital converter, while it transmits the information back to the RX through the front-end by means of backscattering. The front-end uses ON–OFF keying modulation and FM0 encoding on ambient FM station signals. The RX consists of a commercial low-cost software-defined radio which downconverts the received signal to baseband and decodes it using a suitable signal processing algorithm. A theoretical analysis of the error rate performance of the system is provided and compared to bit-error-rate measurements on a fixed transmitter-tag-RX laboratory setup with good agreement. The prototype tag was also tested in a real-time indoor laboratory deployment. Operation over a 5-m tag-reader distance was demonstrated by backscattering information at 2.5 kb/s featuring an energy per packet of $36.9~\mu \text{J}$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.