Abstract

Ambient backscatter technology that utilizes the ambient radio frequency signals to enable the communications of battery-free devices has attracted much attention recently. In this paper, we study the problem of signal detection for an ambient backscatter communication system that adopts the differential encoding to eliminate the necessity of channel estimation. Specifically, we formulate a new transmission model, design the data detection algorithm, and derive two closed-form detection thresholds. One threshold is used to approximately achieve the minimum sum bit error rate (BER), while the other yields balanced error probabilities for “0” bit and “1” bit. The corresponding BER expressions are derived to fully characterize the detection performance. In addition, the lower and the upper bounds of BER at high signal-to-noise ratio regions are also examined to simplify a performance analysis. Simulation results are then provided to corroborate the theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.