Abstract

PurposeBecause air pollution has been linked to glaucoma and AMD, we characterized the relationship between pollution and retinal structure.MethodsWe examined data from 51,710 UK Biobank participants aged 40 to 69 years old. Ambient air pollution measures included particulates and nitrogen oxides. SD-OCT imaging measured seven retinal layers: retinal nerve fiber layer, ganglion cell–inner plexiform layer, inner nuclear layer, outer plexiform layer + outer nuclear layer, photoreceptor inner segments, photoreceptor outer segments, and RPE. Multivariable regression was used to evaluate associations between pollutants (per interquartile range increase) and retinal thickness, adjusting for age, sex, race, Townsend deprivation index, body mass index, smoking status, and refractive error.ResultsParticipants exposed to greater particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and higher nitrogen oxides were more likely to have thicker retinal nerve fiber layer (β = 0.28 µm; 95% CI, 0.22–0.34; P = 3.3 × 10−20 and β = 0.09 µm; 95% CI, 0.04–0.14; P = 2.4 × 10−4, respectively), and thinner ganglion cell–inner plexiform layer, inner nuclear layer, and outer plexiform layer + outer nuclear layer thicknesses (P < 0.001). Participants resident in areas of higher levels of PM2.5 absorbance were more likely to have thinner retinal nerve fiber layer, inner nuclear layer, and outer plexiform layer + outer nuclear layers (β = –0.16 [95% CI, –0.22 to –0.10; P = 5.7 × 10−8]; β = –0.09 [95% CI, –0.12 to –0.06; P = 2.2 × 10−12]; and β = –0.12 [95% CI, –0.19 to –0.05; P = 8.3 × 10−4], respectively).ConclusionsGreater exposure to PM2.5, PM2.5 absorbance, and nitrogen oxides were all associated with apparently adverse retinal structural features.

Highlights

  • Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience

  • Participants exposed to greater particulate matter with an aerodynamic diameter of

  • Participants resident in areas of higher levels of PM2.5 absorbance were more likely to have thinner retinal nerve fiber layer, inner nuclear layer, and outer plexiform layer + outer nuclear layers (β = –0.16 [95% CI, –0.22 to –0.10; P = 5.7 × 10−8]; β = –0.09 [95% CI, –0.12 to –0.06; P = 2.2 × 10−12]; and β = –0.12 [95% CI, –0.19 to –0.05; P = 8.3 × 10−4], respectively)

Read more

Summary

Introduction

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Because air pollution has been linked to glaucoma and AMD, we characterized the relationship between pollution and retinal structure

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call