Abstract
Rationale: Outdoor air pollution is a potential risk factor for lower lung function and chronic obstructive pulmonary disease (COPD). Little is known about how airway abnormalities and lung growth might modify this relationship. Objectives: To evaluate the associations of ambient air pollution exposure with lung function and COPD and examine possible interactions with dysanapsis. Methods: We made use of cross-sectional postbronchodilator spirometry data from 1,452 individuals enrolled in the CanCOLD (Canadian Cohort Obstructive Lung Disease) study with linked ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2) air pollution estimates. Dysanapsis, or the ratio of the airway-to-lung volume calculated from thoracic computed tomography images, was used to examine possible interactions. Measurements and Main Results: In adjusted models, 101.7 ml (95% confidence interval [CI], -166.2 to -37.2) and 115.0 ml (95% CI, -196.5 to -33.4) lower FEV1 were demonstrated per increase of 2.4 ug/m3 PM2.5 and 9.2 ppb NO2, respectively. Interaction between air pollution and dysanapsis was not statistically significant when modeling the airway-to-lung ratio as a continuous variable. However, a 109.8 ml (95% CI, -209.0 to -10.5] lower FEV1 and an 87% (95% CI, 12% to 213%) higher odds of COPD were observed among individuals in the lowest, relative to highest, airway-to-lung ratio, per 2.4 μg/m3 increment of PM2.5. Conclusions: Ambient air pollution exposure was associated with lower lung function, even at relatively low concentrations. Individuals with dysanaptic lung growth might be particularly susceptible to inhaled ambient air pollutants, especially those at the extremes of dysanapsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory and Critical Care Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.