Abstract

ABSTRACTFourier transform infrared spectroscopy (FT-IR) has been used to predict elemental carbon (EC) on polytetrafluoroethylene (PTFE) filter samples from the United States Environmental Protection Agency's Chemical Speciation Network (CSN). This study provides a proof-of-principle demonstration of using multilevel modeling to determine thermal/optical reflectance (TOR) equivalent EC (a.k.a., FT-IR EC) on PTFE samples collected in the CSN. Initially, spectra from nine geographically disperse sites were pooled and calibrated directly to collocated TOR EC measurements. The FT-IR EC quantified in test samples was deemed substandard when judged against an earlier study, e.g., R2 = 0.760 and median absolute deviation (MAD) = 26.7%. Upon scrutinizing each sample's absolute prediction error and squared Mahalanobis distance, Elizabeth, NJ predictions were found to exhibit atypical systematic errors, motivating the development of a multilevel classification and calibration procedure. Atypical Elizabeth spectra w...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call