Abstract

AbstractA coupled biosphere–atmosphere statistical–dynamical model is used to study the relative roles of the impact of the land change caused by tropical deforestation and global warming on energy balance and climate. Three experiments were made: 1) deforestation, 2) deforestation + 2 × CO2, and 3) deforestation + CO2, CH4, N2O, and O3 for 2100. In experiment 1, the climatic impact of the Amazonian deforestation is studied. In experiment 2, the effect of doubling CO2 is included. In experiment 3, the concentrations of the greenhouse gases (GHGs) correspond to the A1FI scenario from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. The results showed that the percentage of the warming caused by deforestation relative to the warming when the increase in GHG concentrations is included is higher than 60% in the tropical region. On the other hand, with the increase in GHG concentrations, a reduction in the decrease of evapotranspiration and precipitation in the tropical region occurs when compared with the deforestation case. Because of an increase in the net longwave flux at the surface, there is a reduction in the decrease of the surface net radiation flux when compared with the case of only deforestation. This leads to an increase in the surface temperature. Although the changes are higher at 5°S, the percentage of them when the increase in GHG concentrations is included together with deforestation relative to the case of only deforestation is higher at 5°N (higher than 50% for the surface temperature and higher than 90% for the foliage and air foliage temperatures) in both experiments 2 and 3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call