Abstract

The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved.

Highlights

  • Tropical regions contain more than half of biological diversity on just 7% of the Earth’s surface [1,2]

  • Why there are so many species in certain areas and how such diversity arose before the Quaternary are largely unstudied

  • Rather than the Amazon Basin being the center of origin, our results show that the diversity stemmed from repeated dispersals from adjacent areas, especially from the Andes

Read more

Summary

Introduction

Tropical regions contain more than half of biological diversity on just 7% of the Earth’s surface [1,2]. Differences in biodiversity between tropical and temperate regions have been attributed to contrasting speciation and extinction rates [3]. Within the Neotropical realm, the Amazon Basin and the Chocoan region contain half of Earth’s remaining rainforests and one of the largest reservoirs of terrestrial biodiversity. The well-documented high aÀdiversity (species richness) of the flora and fauna of the Amazon rainforest [5] is usually attributed to local geoclimatic dynamics that promote monotonic accumulation of lineages [6,7]. Using phylogeographic analyses of the endemic and diverse clade of poison frogs (Dendrobatidae), we reconstructed Neotropical biogeography from the Oligocene to the present and revealed a widespread and highly dynamic pattern of multiple dispersals and radiations during the Miocene

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.