Abstract

Measurements of temperature, salinity, and currents in the Amazon River plume over a section in the open ocean of the western tropical North Atlantic (38°48′ W) are considered. The measurements were carried out using an AML Base X CTD probe in the upper layer and a flow-through system that measures salinity, turbidity, and chlorophyll-a content in seawater while a vessel is on the way. The measurements were supplemented by velocity profiling using shipborne SADCP. Additionally, archived oceanographic data from the World Ocean Database (WOD18), data on satellite altimetry measurements (AVISO), and satellite salinity data from Aquarius and SMOS were used. It is shown that the width of the Amazon River plume is about 170–400 km and the depth of desalination is from 50 to 100 m. Surface salinity decreases compared to the background (36.1) by 0.25 in February and by more than 3.0 in September during the period of maximum development of the plume, which was determined from satellite measurements of surface salinity. Lagrangian modeling of the back-in-time advection of passive markers simulating freshwater particles was carried out. It was shown that the source of freshwater in the measurement area is discharge from the Amazon River. Amazon River freshwater covered a distance of 3300 km in 60–80 days. The estimate of freshwater transport in the plume was 0.02 Sv, which is one order of magnitude smaller than the mean river discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call