Abstract
Parallel single-cell multimodal sequencing is the most intuitive and precise tool for cellular status research. In this study, we propose AMAR-seq to automate methylation, chromatin accessibility, and RNA expression coanalysis with single-cell precision. We validated the accuracy and robustness of AMAR-seq in comparison with standard single-omics methods. The high gene detection rate and genome coverage of AMAR-seq enabled us to establish a genome-wide gene expression regulatory atlas and triple-omics landscape with single base resolution and implement single-cell copy number variation analysis. Applying AMAR-seq to investigate the process of mouse embryonic stem cell differentiation, we revealed the dynamic coupling of the epigenome and transcriptome, which may contribute to unraveling the molecular mechanisms of early embryonic development. Collectively, we propose AMAR-seq for the in-depth and accurate establishment of single-cell multiomics regulatory patterns in a cost-effective, efficient, and automated manner, paving the way for insightful dissection of complex life processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.