Abstract

Although most species in the genus Amanita form ectomycorrhizal associations, a few are reported to be saprotrophs living in grassland habitats. Little is known about the ecology and distribution of these free-living Amanita species. We describe the ecology of Amanita thiersii, a species commonly collected in lawns throughout the Mississippi River Basin. Stable isotopes of carbon, transcriptomic sequences and patterns of growth on complex carbon sources provide evidence for A. thiersii as a saprotrophic species. Sporocarps of A. thiersii are less depleted in 13C compared to published data for ectomycorrhizal fungi, supporting a saprotrophic mode of carbon acquisition in the field. Orthologs of cellulase genes known to play key roles in the decomposition of cellulose in other basidiomycetes were identified in a transcriptome of A. thiersii, establishing that this species has the genetic potential to degrade cellulose. Amanita thiersii also can use artificial cellulose or sterile grass litter as a sole carbon source. DNA sequences of three nuclear gene regions and banding patterns from four inter-simple sequence repeat markers were identical across 31 populations from throughout the known range of the species, which suggests the genetic diversity of A. thiersii populations is low. Maps of A. thiersii collections made from the 1950s until present suggest this species is experiencing a range expansion. It was reported first in 1952 in Texas and now occurs in nine states north to Illinois. These data provide an ecological context for interpreting the genome of A. thiersii, currently being sequenced at the United States Department of Energy’s Joint Genome Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.